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A flexible and accurate method for solving nonlinear time- and frequency-dependent flux- 
limited radiation diffusion and radiation-matter coupling problems in one dimension is 
developed. The method is based on converting the set of partial differential equations for the 
flux-limited multigroup diffusion approximation into a system of ordinary differential 
equations which are integrated by a generalized stiff equation solver. Unlike previous 
operator-splitting techniques which can introduce instabilities into the solution or which 
produce smooth but highly inaccurate solutions, this scheme provides a reliable accurate 
solution with reduced overall computational effort. The solutions describe both the streaming 
and diffusion limits of transport theory and are stable with time steps comparable to the 
changes in physical variables. 

INTRODUCTION 

The multigroup flux-limited diffusion approximation to the radiative transfer 
equation is an efficient and relatively inexpensive approach which has been widely 
used in various applications. Pioneering research of LeBlanc and Wilson in the early 
1970s was first used by Alme and Wilson [l] to study x-ray emission from neutron 
stars. As is well known, approximate treatment of the transfer equation may result in 
serious errors for some problems. Less widely appreciated is the fact that significant 
further errors can be introduced by the algorithm used to implement the method. 
These errors typically arise from applying operator splitting techniques without 
restricting the time step sufficiently to ensure accurate treatment of a wide variety of 
nonlinear processes that may be present. To overcome some of these difficulties, 
Lund and Wilson [2] have devised an iterative matrix-inversion technique for solving 
one-dimensional time-dependent multifrequency radiation transport problems. In this 
paper, we present an implementation of the multigroup diffusion approximation in 
one dimension which uses a general stiff ordinary differential equation solver to 
control errors systematically while permitting relatively large time steps to be taken. 
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This method has been found to be superior to operator splitting with respect to 
accuracy, reliability, and efficiency. 

The outline of the paper is as follows. In Section I, the physical model of the 
radiative transfer equation is presented. Section II is devoted to details of the solution 
of the problem, which turns out to be quite straightforward. Some numerical 
illustrations are provided in Section III. Finally, Section IV contains a summary of 
our experience with the model. 

I. PHYSICAL MODEL 

The general radiation transport problem is to describe the radiation field as a 
function of direction, frequency, and position in space. In general, the radiation field 
has units of energy/volume-steradian-frequency. For simplicity, we take a one- 
dimensional Lagrange viewpoint with discretized frequency groups. In the following 
text, units for the dependent and independent variables are indicated in curly braces. 
Naturally, any consistent set of units may be used. 

A model using a one-dimensional Lagrangian mesh with spherical, cylindrical, or 
planar symmetry and discretized frequency groups has independent variables, 

xj : spatial coordinate of the jth interface (j = 1, J) {cm}, 
v, : center energy of the gth photon group (g = 1, G) {keV}, 
t: time (set}. 

The range of the various indices are indicated above in parentheses. The dependent 
variables, all of which are zone centered, are 

u,i+ I/2 : photon energy density contained in the gth group for the jth zone 
{erg cm-3}, 

4, I,2 : ion temperature in the jth zone { keV }, 

e;+ I/2 : electron temperature in the jth zone { keV }. 

Within each zone, all quantities are assumed to be independent of position. Similarly, 
all quantities are assumed to be independent of photon energy within a group. 

The dynamical equations, before spatial discretization, are 

% _ at - -v * FL + cu;(ee)[Bg(ee) - up] + s, + w, (g= 1, G), (1.1) 

pc:g4.F"-c 2 u;(ee)[Bg(ee) - zig] - -f s, 
g=l g=1 

+ dye’) * (8’ - ee) c;p + F/p, 

PC\ $- = -v . Fi + &(ee) . (8’ _ 6’) . c;P + silp. 

(1.2) 

(I-3) 
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The following quantities have been introduced: 
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C: 

B,F’) : 

F;: 

Fe, F’ : 

s,: 

W,: 

c;,c;: 

P: 
0;: 

S’, s’: 

speed of light {cm set- ’ }, 
integral of the Planck function at temperature 8 over group g {erg 
cmv3}, 
photon energy flux for group g {erg cm-2 set-‘}, 
energy flux from electron and ion heat conduction {erg cm-’ set -’ }, 
energy rate into group g from Compton scattering with thermal 
electrons {erg cme3 set-I}, 
energy rate into group g from hydrodynamic work on radiation Ierg 
cmp3 set-‘}, 
specific heat at constant volume for electrons and ions {erg g-’ keV-‘}, 
matter density { g cm-3 }, 
macroscopic absorption cross section for photons of frequency v,, 
corrected for stimulated emission {cm-’ 1, 
energy rate from hydrodynamic work and external sources to electrons 
and ions {erg g-’ set-’ ], 
ion-electron coupling rate { set - ’ } . 

Derivations of the appropriate Lagrangian transport equations have been given by 
Castor [3], using Lindquist’s formalism [4], and by Buchler [5 ], using invariance of 
the photon-Boltzmann equation. Both Castor and Buchler work in a Lagrangian 
frame and only carry terms in one order of v/c. Equation (1.1) is a further 
simplification which is entirely adequate in the diffusion approximation. Steps leading 
to Eq. (1.1) involve the cancellation of certain v/c terms and neglect of others. Where 
the material velocity (v) is small compared with the speed of light, one can properly 
neglect v/c terms in the equation of transfer. Further, where the opacity is continuous 
and spectral lines are ignorable, it is often sufficient to obtain solutions to the transfer 
equation by omitting v/c terms. 

We have chosen to use the Lagrangian frame of reference because it is the natural 
frame for specifying fluid thermodynamic properties. Moreover, it is the frame in 
which atomic absorption and emission are isotropic and in which the equation for 
Compton scattering can be written easily. Although the diffusion limit corresponds to 
a very low order approximation in both frequency and angle, as well as space and 
time, it is widely used in many radiation-hydrodynamic calculations because of its 
inherent simplicity. Surprisingly, in view of all the approximations made, it is a 
reasonably accurate description in many situations, correctly giving gross features of 
the radiation flow in both a qualitative and a quantitative sense. 

Any diffusion equation such as Eq. (1.1) has an infinite speed of propagation and 
consequently tends to predict too large a radiative flux. For these reasons, a flux- 
limiting approach is used in the present work. The radiative fluxes FL are calculated 
by flux-limited diffusion, 

F; = D; Vu,, (1.4) 
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where the diffusion coefficients 0: incorporate a flux limiter due to Wilson, 

which interpolates between the diffusion and free streaming limits in an ad hoc 
fashion. The l/x term is present only for spherical geometry. Here, CJ’, o’, and ut are 
the absorption, scattering, and total photon cross sections. More recently, Levermore 
[6] has derived a more physically rigorous form for the flux limiter. Many other flux 
limiters have been suggested and it is diffkult, if not impossible, to single out one as 
preferred. Which performs best may well be problem dependent. A comparison of 
various flux limiters including those of Wilson has been made by Pomraning [7, 81. 
A broader view of flux-limited diffusion theory has been provided by Levermore and 
Pomraning (91 and consequently will not be discussed here. 

The difference formula for evaluating the radiative fluxes at zone interfaces incor- 
porates a combination of optical depth averaging (for the diffusion limit) and 
upstream differencing (for the free streaming limit). After differencing, the radiative 
fluxes are 

The electron and ion heat fluxes are also approximated by flux-limited diffusion and 
similarly differenced to yield 

FT = aJ(eje- ,,2 - $+ 1,2), F; = a):(@;p 1,2 - 19;+ &. (1.7) 

We note that the flux coeffkients ak depend on utieI12 and u~+,,~, although this 
dependence is not explicitly indicated. Similar dependencies are present for a; and u,;. 
Vacuum boundaries are simply modeled by including a “phantom” zone at each end 
of the Lagrangian mesh. These zones have specified photon energy densities, infinite 
radiative mean free paths, and zero heat conductivities. 

The flux divergences which occur in Eqs. (1. l)-( 1.3) are zone centered and 
evaluated in terms of the interface fluxes as 

-(‘.F)j+,,,=~[A,F,-Ai,,Fj+,J. 
J+1/2 

where we have defined 

'j+ l/2' volume of the jth zone {cm3}, 

Aj: area of the jth interface {cm 2 }. 
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The hydrodynamic work on radiation is approximated by 

where y is the radiation gamma which in the pure diffusion limit is just the well- 
known y = j adiabatic compression. Our techniques for differencing the radiative, 
electron, and ion heat fluxes, and for averaging the diffusion coefficients are standard. 
Lund and Wilson [2] have discussed them in detail and consequently we do not 
address them here. 

The calculation of the Compton energy rate S, requires some discussion. Previous 
implementations of multigroup diffusion which included Compton scattering [ 10, 1 l] 
have utilized the Kompaneets equation [ 121, for which the independent variable is the 
photon mode occupation number ‘2,. The method we have developed requires that the 
Compton term S, be treated simultaneously with the rest of Eq. (l.l), so that it must 
be expressed in terms of the ug. Although there is a simple relation between ng and 
u 8’ 

it is more convenient to express S, directly in a transfer matrix form than to 
transform the Kompaneets equation to the new variables. Stone [ 131 and Winslow 
[ 141 have discussed the relationship of the two approaches. 

To develop the appropriate form for S, we note that as differenced by Chang and 
Cooper [ 151 the Kompaneets equation couples only nearest neighbor groups. 
Retaining this coupling and requiring that the Compton operator conserve photon 
number which we define as 

results in 

s,=c u,‘-,““- 
[ V 

ug-1(P,ug+ 1)--~~,co,-,ug-1+ 1) 
g-1 

V 
- 

C%G6g+&+1+ l)+o,, B-ug+agug + 1) * 
V g+l I 

(1.11) 

The cross sections for up and down scatter u: and o; are completely determined 
by the requirements that the energy transfer rate agree with that determined from 
numerical integration of the Compton energy transfer cross section, and that the 
proper Bose-Einstein distribution be the steady state solution. The (/?u + 1) terms 
account for stimulated scattering and make the scattering term nonlinear in u, 
although this is rarely important. 
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The dynamical equations (1. l)-( 1.3), after spatial differencing and inclusion of the 
explicit forms for S, and W,, become 

URjf 112 = Vj, ,,2 1 [Ajaiduti-l/* - ‘gj+ 112) -Aj+ I aij+ It”gj+ 112 - ugj+3/2)] 

+ UJ S+ l/*teJ+ II*>[Bg(eje+ I/2) - ug.j+ 1121 

+ ’ u,‘- I,j+ l/*teje+ I/2) 
I 

“’ -‘R- I,j+ ,,2cljn’Rj+ I,2 + I> 
‘8-1 

- *i+ 1/2(‘je+ I/*) ‘Rj+ 1,2@g- 1 ‘R-I+j+ I/,? + l> 

-%s+dc+l/2) U~jt1,2~~+1Ugtl,jtl/Z + 1) 

u,+~,jt,,2~&t,,2 + '> 
I 

- 
' ' 

&% L 
',+_l,jt ,,z('jt I/2) LuR-l,j+ I,2(pguRj+ j/2 + l> 

'8-1 

- as+ 1,2(eje+ 1,2) utit ,,,ca,-, uR- I,jt ,,2 + 1) 

- OS+ I/2CeJ+ 1,121 'gi+ */2@gt lug+ I,j+ l/2 + 1) 

l$t,,2= l ___ pjt ,,2clfit ,,2 1 ctl,2 [Aja.i(ej-~,2 - ejt 10) 

-A jt l,2aj+1(e:+1,2 - ej,,,, 
4 

+ 0$“+ l,2(e;+ ,,2 - ejt ,,2) + s:,1/2, 
ctj+ l/2 

(1.13) 

(1.14) 

(1.15) 
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The physical model is thus represented by a large set of ordinary differential 
equations, with typical problems having between 100 and 10,000. These equations 
have a wide variety of nonlinearities. Although some of these are explicitly present, 
for example, in the temperature dependence of B,(0), others result from coupling with 
other physical processes. Examples of the latter include strongly temperature- 
dependent source rates resulting from thermonuclear reactions and temperature 
dependence of absorption cross sections. There are many others. We note further that 
the equations are typically very stiff, with characteristic timescales spanning many 
orders of magnitude, and have a fairly complex cross-coupling pattern. 

II. THE INTEGRATION METHOD 

Our model solution is evolved in time using a variant of Alan Hindmarsh’s 
GEARBI [ 161 package. This package is one of the Gear [ 171 family of codes and is 
well documented. We had to vary the usual Gear predictions for 0’ to improve the 
likelihood of convergence in the nonlinear solver. 

For those not familiar with the method, a rough sketch is in order. The current 
solution vector y(t) is advanced by predicting a value y^(t + 4). This value is then 
“corrected” by solving a nonlinear equation. The prediction and correction depend on 
the “order” the method is using. The order varies from 1 to 5 and is the degree of the 
polynomial which defines the predicted and corrected values. At first order, for 
example, in solving i, = f(y, t) we would have y^(t + dt) = y(t) + dtf(y, t) and solve 
for ~(t + dt) by solving the backward Euler equation, 

y(t + At) - y(t) = Atf[ y(t t At), t + At]. 

At higher orders more than one past solution vector is used but the idea is the same. 
One important fact is that at any order, the Jacobian of the nonlinear problem 
consists of some diagonal matrix plus the Jacobian aflay, and thus has the same 
sparsity pattern. 

The order and At are adjusted so that the approximate local error in going from t 
to t t At is bounded in norm by a user-supplied tolerance. The order and AC are 
chosen so that this tolerance is met and At is as large as possible. Whenever At 
changes, an interpolation is used to get data at the new spacing. There are some 
heuristic rules to prevent too frequent changes in order and At, especially the latter 
since the Gear method is at heart a fixed-step algorithm. We now feel that use of a 
truly variable step method like TORANAGA [ 181 might be superior since we usually 
have to pay most of the penalties associated with those methods anyway. 

The nonlinear solver typically calls a linear solver and there ensues considerable 
discussion between the integrator, nonlinear solver, and linear solver until a At and 
order have been found which enables all of them to satisfy their respective error 
criteria. The most difficult part of using this method is the design of a suitable linear 
solver, and writing and debugging the subroutines for f(y, t) and aflay. 
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A. Solution of the Nonlinear Problem 

The nonlinear problem posed by the integrator is solved by Newton’s method. The 
only variation is whether we evaluate the Jacobian matrix at each iterate or trial 
solution (“full” Newton) or use the Jacobian at some previous solution iterate or time 
step (“modified” Newton). Modified Newton is used until a failure occurs (i.e., the 
linear solver fails or convergence does not occur). If the Jacobian is out of date, it is 
updated and we try again. If the Jacobian is up-to-date, and failure occurs anyway, 
we judge that the problem has become “hard” and switch to the full Newton method. 
When failure occurs with the full-Newton integrator, we cut the time step (At) size. 

As a further wrinkle, it is possible to try returning to modified Newton after a 
while to see if the problem has “relaxed.” 

To apply the ordinary differential equation solver to the physics model given by 
Eqs. (1.13~( 1.15), the dependent variables are arranged as a single vector with the 
ordering, 

The number of groups is G, as previously, while J is the number of spatial zones 
plus two (to account for the phantom zones at the two boundaries). The Jacobian 
matrix C which is needed for the Newton iteration is formed in a straightforward way 
from Eqs. (1.13~( 1.15), although a number of approximations are made. The 
nonzero Jacobian elements are 

aa& 
Qk + (%.-,,2 - %j+ I/Z) au y 

RI- Liz I 

atibV+W = c 
at4 

u+ 
g- l.jt l/2 

g-l,j+ll2(B:+~,2)~~~u~+1,2 + l> 
g--L 

-P8-lu~+1/2Ugj+1/2 5 
I 

ah+ l/2 1 
= - ~ 

autit l/2 ‘j+ l/2 1 L 
Aj G - C”gj- l/2 - Ugj+ l/2> 

aa; 

aub-j+ l/2 I 

+ Aj+ 1 
[ 

ak+ 1 - C”gj+ l/2 - Ugi+3,2) 
aaL+, 

au,+ 112 I! 

- cc+ ,/2w+ ,,2) - 4G-i. ,,*<q+ ,,,>Gc,-, u,- ,j+ ,,2 + 1) 

+ d+ 1,2(eje+ 1,2wt1 u,, lj+ l/2 + 1) 

-Pg~g+l,j+~,2(8je+1,2)~u 8t Ijt ,/2 
g+1 
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-Pgu~-~J+‘,2(BjPt1,2)~~ g-l,jt 1/2 
g-1 

ati 
'+l" au =' "~+l,jt1/2("~+1/2) 

g+l.j+1/2 [ 
&GOg%+l12f 1) 
g+l 

aligj- 1 j2 

q+ I /2 

aii gj+ l/2 A 
=- a'. j+l a&+, 

"gj+3/2 vj+l/2 I 
glt1 + ("gj+*/2 - Ugj+3/2) au 9 

gjt 3/2 I 

84, L/2 

== 

AJ 
I V 

) 
pj+ 1/2cvJ+~/2 j+l/Z I 

a&1,2 

as:,,!,=- 

Aj 

pj+1/2ct,+1,2 yJ+1/2 II 
Aj u;- (0,;_1/2 - Bj+,,2 

+Ajt, ~~+,-((8~+,,2-B)+3,2 
ie 

- wj+ I/29 

q+ 1,2 -= 
*j+ I 

afl;+3,2 Pjtl12cLj+ l/2 vjt l/2 I 
'i+ 1 + fei* 112 - ei+i+3j2 

@LLJ, 

j+ 3/2 

a@, 112 
ad 

-----A-= AJ 

a%/2 Pji 1/2cevj+ 1/2 vj+ 112 I 
Qj’ + (q 1/z - e;'t l/Z)&- 9 

,-I/2 J 

asjet,,, c 

%j+1/2 = Pj+ I/26jt l/2 1 
$J+1,2(%,2) 

+ ug-vvg-l [Q,j+l,2t~j+,,2)Ga,-,~,-,.J+,,*+ 1) 
R 

+~g"gt*,j+I12(e~+li2) ug+lj+ 1/21 
V g+1-Vg 

Vg 
[6~+1/2(~~+1/2)G13g+1Ug+1,jt1/2 + '1 

+ figopt-I,jt1/2 ~+1/2 (0: )~g--lj+l,zl~~ 
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a8;,,izrwi,e 4fjtl/2 

a$+ l/2 
-3 

'+ '/2 c$+ ,,2 

@+I,2 1 Ci 

%L= - Pj+1/2Ctj+I/2 E?, 
cgj+ ,,2(q+ ,,2) y$’ I/J - u.)‘+ ,,2 2$x 

./t I/2 v.1+ I/2 

1 

P.it1/2cEj+ 112 vi+ 112 
jAj [".F - Csj- 112 - SF+ 1,2)59--J 

./t I/2 

I 

W, , 
+Ajtl u.r+I-<e.~t~,2-8ie+3,2)- 

as;+ I/2 Ii 
, 

@+I/2 Ajt 1 -= 

hi 1/2ctjtI/2 vj+ 112 I 
4, I + VT, I,2 - q, 3,2) + 

1 
. 

wt3/2 /t3/2 

The sparsity pattern of the Jacobian is shown in Fig. 1. We note some approx- 
imations made in calculating the Jacobian, 

(1) The opacity ca and the transfer matrix elements O* are evaluated at a 
predicted value of the electron temperature 8’ which may differ from that at which 
the Jacobian is being evaluated. 

(2) A number of derivatives are assumed to be zero, 

acra au’ aoie ad ad ad o --=-=-=-===. 
ZF - iw ase au, a?’ m 

(3) Terms proportional to pR, which arise from stimulated Compton scattering, 
are ignored. 

B. Solution of the Linear Problem 

We wish to solve equations of the form Cz = 1, where C is a large sparse matrix. C 
has the same sparsity pattern as the Jacobian matrix for our differential equations. 
This pattern is illustrated in Fig. 1, where for convenience we have shown only three 

Zone 

Zone 

FIG. 1. Sparsity pattern of the Jacobian. 
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photon energy groups and three zones. The shaded squares denote (possibly) nonzero 
components. 

In general, C is a block tridiagonal matrix. Each diagonal block is a (G + 2) by 
(G + 2) matrix, where G is the number of photon energy groups. These diagonal 
blocks are, in turn, so called bordered tridiagonal matrices. That is, they are 
tridiagonal with additional entries in the last row and column, which correspond to 
photon4ectron interactions in each zone. 

The general method of solution is a new one we call “double-splitting iteration.” 
The splitting iteration technique refers to repeated iteration using a matrix A4 which 
approximates C in some sense, 

‘i+l =M-‘(z-Czi)+zi=M-‘[z-(C-M)zi]. 

This iteration is only feasible if Mzi+, = I - (C - M)zi is easier to solve than Cz = 1. 
If z is the true solution, so that Cz = I, then we have 

MZi+ 1 = Cz - Czi + Mzi or M(zi + 1 - z) = (C - M)(z - Zi). 

Thus if IIM-‘(C-M)11 < 1, we have IIzi+,--zII < llz-zzill and the iteration 
converges. But M-‘(C - M) = M-‘C - I so that if M is a good approximation to C, 
[Ii&f-‘C - Z/I should be small. 

A double-splitting iteration is simply a method in which two different M’s are used 
in turn, 

Zi+l=“,1[z-(C-M*).Y]9 

where y = &‘[I - (C - M,)zi]. The rate of convergence depends on IIM;‘(C - MJ 
M;‘(C-M,)lI, h’ h w ic may be smaller than IlM; ‘(C - M,)II * IlM; ‘(C - Ml)& The 
alternation of the two splittings may be better than repeating either one. 

Indeed, we select M, and M, to represent two distinct aspects of the physics. 44, 
and M, are shown in Figs. 2 and 3, respectively. 44, consists of the diagonal blocks 
of C. M, consists of the outer diagonals, the main diagonal of the diagonal blocks, 
plus the last two rows of the diagonal blocks. Since we first devised this method, a 

n 
Ml 

Nl 

FIG. 2. The first splitting reflects couplings between spatial zones. N, labels that part of C not 
included in M, . 



216 AXELROD, DUBOIS, AND RHOADES 

Mz 
n N2 

FIG. 3. The second splitting reflects couplings within zones. N, labels that part of C not included 
in M,. 

similar splitting scheme for a somewhat less complicated physical problem has been 
used by Mihalas, Weaver, and Sanderson [ 191. 

It is easy to solve M,z = y. It suffices to solve this equation for each diagonal 
block, and indeed the solutions can be done in parallel on a vector or parallel 
computer. Since the diagonal blocks are bordered tridiagonal, we can write each 
block D as a product D = LU, where L and U are: L is a lower bidiagonal matrix 
plus a last row, L has l’s on the diagonal, and U is an upper bidiagonal matrix with 
an additional last column. 

Denoting the tridiagonal part of D by T, and letting R, E, and 6 denote the bottom 
row (less the last element), column (less the last element), and corner element, respec- 
tively, L and U can be found as follows: 

( 1) Write T = L i U, ; find L , and U, by the usual L-U decomposition method. 
By convention, L, has unit diagonal. 

(2) Solve L,E, =E for E,. 
(3) Solve R,U,=R for R,. 
(4) Find 61=6-R,oE,. 

(5) L = (R”: 3. 
(6) U= (“,I $). 

The reader may confirm that L U = (,’ 5) = D as desired. 
The solution of the equation M,z = y is a little easier to describe but harder to 

picture. Note that ignoring the last two rows in each block, the matrix is tridiagonal. 
Therefore we can solve for all but the last two components (corresponding to the ion 
and electron temperatures) in each zone. Once these components are known, the last 
two rows can be reduced to a 2 X 2 system, which can be solved straightforwardly. 

We have gone through the above for completeness, but viewed physically, it is easy 
to say what is being done. In solving M,z = y, we are including only the couplings of 
the matrix which represent processes within a zone. Fortunately, the form of those 
couplings admits an L-U decomposition. In solving M,z = y, we are solving the 
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tridiagonal system which represents photon transport between zones, then updating 
the ion and electron temperatures. This view helps one judge that M, and 44, are 
likely to be excellent approximations of C, especially taken alternately. In fact, in 
practice convergence has been excellent, typically taking 3 - 5 iterations. 

If the linear solver has not converged after a reasonable number of steps, it can 
signal failure to the nonlinear solver and in turn the ordinary differential equation 
solver will decrease the time step. Thus, failure of this iteration is not fatal at all. 
Eventually, for a small enough time step M, and M, will both become excellent 
approximations to C. 

III. NUMERICAL EXAMPLE 

As noted in the Introduction, our primary concern is with errors which arise from 
the choice of algorithms used to solve the multigroup diffusion form of the radiative 
transfer equation rather than those which follow from the diffusion approximation 
itself. Such errors occur from applying operator-splitting techniques without 
restricting the time step sufficiently to ensure an adequate treatment of the nonlinear 
processes which are important in obtaining an accurate solution. 

For solutions based on a single radiation temperature model, time step controls can 
be devised to provide almost any desired degree of accuracy. The same cannot be 
said for the multigroup model with operator splitting. Often one is forced to run with 
various limits to see if the solution has converged. By contrast, our algorithm does 
not have this problem. 

To illustrate, we have invented a test problem which has vigorous energy 
production. Consider a 0.002-cm radius sphere tilled with deuterium at density 
10,000 g/cm3 and initial temperature 5 keV. The total mass of deuterium is approx- 
imately 33Opg. Using the thermonuclear reaction cross section of Chase, LeBlanc, 
and Wilson [20] we have calculated the thermonuclear burn with both a multigroup 
operator-splitting code and a multigroup code using our model. 

Both codes are one dimensional and Lagrangian with spherical symmetry. In 
addition to the equations for radiation transport, electron and ion thermal conduction, 
and radiation-matter coupling, the equations of hydrodynamics with artificial 
viscosity are solved. All thermonuclear energy is deposited locally and no attempt is 
made to follow the neutron or helium 3 products of the deuterium reaction. A simple 
gamma law with a gamma of 5/3 is used as the equation of state for deuterium. 
Zoning, boundary, and initial conditions are as follows. The deuterium ball is divided 
into ten equal radial thickness zones from O-O.002 cm radii. The outer boundary is 
initially at rest but otherwise free to move. The deuterium is initially uniform in 
density and at rest. 

The state of the problem is advanced in time by finite steps, the length of which are 
determined by the stability condition for the finite difference equations unless 
artificially constrained by an input parameter or a maximum growth rate of 20%. 
Typical unconstrained time steps are 1 - 5 x lo- l3 set and for a problem duration of 
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FIG. 4. Ion temperature at the center of a deuterium ball in keV versus elapsed time in seconds for 
operator splitting and for the model discussed in the text. 

5 x 10-l ’ set, over 300 time steps are required. The initial time step is 1 X lo-l4 sec. 
A summary of the results of the computer calculations is given in Figs. 4 and 5. 

Figure 4 is a plot of the central ion temperature in keV as a function of elapsed 
time in seconds for both models. The operator-splitting result appears to be both time 
delayed and overheated. Although not apparent in this particular calculation, 
operator-splitting results tend to be somewhat noisy. Since the thermonuclear reaction 
rates and transport coefficients have strong temperature dependence, the time 
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FIG. 5. Ion temperature at the center of a deuterium ball in keV versus elapsed time in seconds for 
operator splitting restricted to a time step of 5 x IO-l4 set and for the model discussed in the text. 
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evolutions of the two calculations are quite different. Both calculations took 310 time 
steps to run to 5 x lOPi1 sec. The operator-splitting code used 0.695 min of computer 
time, while our model code used 0.831 min of computer time. 

Figure 5 is a plot similar to that of Fig. 4. In this case, however, the operator- 
splitting calculation has been restricted to a time step of 5 x lOPi4 sec. The time 
evolutions of both calculations are similar. Operator splitting overpredicts the ion 
temperature, and gives a smooth but incorrect solution. The operator-splitting code 
ran 1020 cycles and used 2.46 min of computer time compared with 0.83 1 min for 
our model. Further reductions of the time step by a factor of 10 in the operator- 
splitting calculation yield results which converge to those predicted by our algorithm. 

IV. CONCLUSION 

Our model has been used to address a variety of test problems. They include those 
dominated by photon-matter coupling, Compton scattering, or radiation transport, as 
well as those in which two or three of these physical processes are significant. This 
provides a considerable experience base for evaluating the strengths and weaknesses 
of the algorithm. The major strength of the method is clearly its ability to produce 
reliably an accurate solution of the physics model each time it is run. This is of 
particular value given the fact that the relative importance of, and coupling stengths 
between, the physical processes included in the model vary radically from problem to 
problem. Operator-splitting schemes do not exhibit the same robustness. It has 
required considerable effort to achieve this robustness, which is directly attributable 
to the use of a general ordinary differential equation solver, while retaining acceptable 
execution speed. 

The execution speed of our model is markedly superior to operator-splitting 
methods on difficult problems when the comparison is made on the basis of equal 
accuracy. On easy problems the situation is reversed, with our model being somewhat 
slower. Even this disadvantage is largely eliminated by the fact that it is necessary to 
rerun the operator-splitting methods with a smaller time step to ensure that the 
problem is in fact easy and that the solution has converged. 
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